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The problem on uniform stationary lateral heating of two bounded cylindrical bodies with different thermo-
physical characteristics which are in ideal thermal contact within the region of contact has been considered.
The exact analytical solution of this problem has been obtained and the conditions of energy balance have
been investigated.

In recent years, in connection with the progress made in high-temperature thermal physics, thermal problems
with boundary conjugation conditions have acquired great importance. However, an analytical solution of these prob-
lems, especially in nonstationary and bounded cases, involves certain mathematical difficulties. Despite the great num-
ber of existing solutions of such kind [1–4], they are usually attributed to specific assumptions (one-dimensionality,
unboundedness or semiboundedness of space, selection of a special plane or axis). In the present work, we consider
the problem on spatial distribution of the temperature field of two inhomogeneous bounded cylinders when they are
under stationary conditions of heating.

There are two cylinders of radius R and lengths l1 and l2 with different thermophysical characteristics. The
cylinders are in ideal thermal contact in the plane z = 0 and from the side surface they are heated by a constant heat
flux with surface power QR. It is necessary to find the distribution of the stationary thermal field in the cylinders. On
the ends we have heat exchange with the environment following the Newton law with heat-transfer coefficients α1 and
α2. If we assume that the environment temperature is equal to zero, then for the stationary temperatures of the cylin-
ders we obtain the equations
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We apply the finite Hankel integral transform to problem (1)–(4):
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in which γm = µm
 ⁄ R. Finally, from problem (1)–(4) we come to the following problem:
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The general solutions of Eqs. (7) and (8) are
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To determine the constants A, B, C, and D we use boundary conditions (8) and conjugation conditions (9),
which yields
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where hi = αi
 ⁄ λi.

We emphasize here that the results obtained hold for all µm > 0 which are the roots of the equation J1(µ) =

0. But the function J1(µ) has zero at the point µ = 0 as well. The solution of problem (1)–(4) for this case will be

considered separately. The Hankel transform and the operator of differentiation with respect to r will take the forms
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The general solutions of Eqs. (16) are as follows:
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To determine the constants E, F, G, and H we use conditions (17) and (18), which yields
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The solution obtained has a rather complicated form. To assure ourselves that the result is accurate, we ana-
lyze it. If we set l1 = l2 = l, λ1 = λ2 = λ, and h1 = h2 = h in Eqs. (23) and (24), then for T1 and T2 we obtain
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Expression (25) is in complete agreement with the equation determining the stationary temperature of a homogeneous
cylinder which is located symmetrically about the plane z = 0 and is heated from the side surface by a constant heat
flux with density QR and which has the same heat-transfer coefficients on its ends.

Now we consider the satisfaction of the stationarity condition. It is obvious that in the stationary state the
total quantity of heat lost to the ends of the cylinders must be equal to that of heat received through the side surface:

2QR (l1 + l2) = R (α1T1 (r, − l1) + α2T2 (r, l2)) . (26)

Let us now set z = −l1 and z = l2 in Eqs. (23) and (24) respectively and consider the terms before the sum
signs (corresponding to the zero root in the equation J1(µ) = 0) by substituting them into the right-hand side of Eq.
(26). Because of the unwieldiness of arithmetic calculations, we give only their final stage:
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R (α1T1 (r, − l1) + α2T2 (r, l2)) = 2QR 
(l1 + l2) (λ1h1 (1 + h2l2) + λ2h2 (1 + h1l1))

λ1h1 (1 + h2l2) + λ2h2 (1 + h1l1)
 = 2QR (l1 + l2) . (27)

The result obtained coincides with the left-hand side of Eq. (26), thus corresponding to the satisfaction of the
condition of energy balance. To determine the value of the contribution of the terms under the sum sign in Eqs. (23)
and (24) to the heat flux, it is necessary to integrate these terms over r with account for the corresponding heat-trans-
fer coefficients. Each term of the sum will represent the product of a certain constant by the integral of the form
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r
R
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 dr = 0, since µm are the roots of the equation J1(µ) = 0. Thus, the heat flux from the

ends of the cylinders is completely determined by the terms before the sum signs in Eqs. (23) and (24). As the nu-
merical calculations show, the terms under the sum signs give an insignificant contribution to the total temperature and
play the role of correcting terms on which the temperature distribution over the radius depends. In the cases where it
is necessary to know only the magnitude of the heating and a high accuracy in determining the spatial temperature-
field distribution is not required (for example, in diffusion welding of small-size products), it will suffice to use the
terms before the sum signs in Eqs. (23) and (24), which have, in addition, a relatively simple form (second-degree
polynomials).

NOTATION

R, radius of the cylinders; l1 and l2, lengths of the cylinders; λ1 and λ2, thermal-conductivity coefficients;
α1 and α2, heat-transfer coefficients; h1 and h2, reduced heat-transfer coefficients; QR, surface power of the heat flux;
T1 and T2, temperatures of the cylinders; T

__
1 and T

__
2, temperatures of the cylinders in the domain of Hankel transforms;

J0 and J1, Bessel functions of the first kind and of zero and first orders; µm and γm, parameters of the finite Hankel
transform; z and r, variables of integration.
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